Irrationality of values of the Riemann zeta function
نویسندگان
چکیده
منابع مشابه
Irrationality of values of the Riemann zeta function
The paper deals with a generalization of Rivoal’s construction, which enables one to construct linear approximating forms in 1 and the values of the zeta function ζ(s) only at odd points. We prove theorems on the irrationality of the number ζ(s) for some odd integers s in a given segment of the set of positive integers. Using certain refined arithmetical estimates, we strengthen Rivoal’s origin...
متن کاملIrrationality of Values of Zeta-function
1. Introduction. The irrationality of values of the zeta-function ζ(s) at odd integers s ≥ 3 is one of the most attractive problems in number theory. Inspite of a deceptive simplicity and more than two-hundred-year history of the problem, all done in this direction can easily be counted. It was only 1978, when Apéry [A] obtained the irrationality of ζ(3) by a presentation of " nice " rational a...
متن کاملq-Riemann zeta function
We consider the modified q-analogue of Riemann zeta function which is defined by ζq(s)= ∑∞ n=1(qn(s−1)/[n]s), 0< q < 1, s ∈ C. In this paper, we give q-Bernoulli numbers which can be viewed as interpolation of the above q-analogue of Riemann zeta function at negative integers in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Also, we will treat some...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Izvestiya: Mathematics
سال: 2002
ISSN: 1064-5632,1468-4810
DOI: 10.1070/im2002v066n03abeh000387